

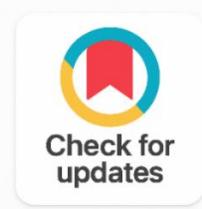
Research Paper



## Studying of thyroid dysfunction on patients with metabolic syndrome

Mohammed Abdulrahman Saeed\*

\*Medical Biochemistry Belarusian State University, Iraq.


### Article Info

#### Article History:

Received: 20 May 2023  
Revised: 03 August 2023  
Accepted: 09 August 2023  
Published: 27 September 2023

#### Keywords:

Patients  
Hyperhomocysteinemia  
Thyroid  
Dysfunction  
Obesity



### ABSTRACT

A retrospective study was conducted several studies aimed at knowing the relationship between the level of thyroid hormone and the metabolic syndrome and according to the results of the study, it is recommended to determine the level of tsh hormone in the pituitary gland in all patients as well as in all patients with risks of developing cardiovascular diseases: in patients who they suffer from obesity, dyslipidemia, arterial hypertension, hyperhomocysteinemia, and tobacco smoking, hereditary factor, diabetes mellitus type 2. No less important is the issue of treatment tactics in patients and in accordance with current recommendations, the appointment of thyroid hormone preparations is indicated for patients with an increase in the level of tsh more than 10  $\mu$  m / l. The assignment of thyroxine to the boundary level of tsh is still a matter of debate. Most authors consider surgical myocardial revascularization, continuous statin therapy, and correction of subclinical hypothyroidism with small doses of thyroxine to normal tsh values as ideal. The most appropriate is the early detection of subclinical hypothyroidism in patients and correction of disorders identified with thyroid hormone preparations. The study showed that subclinical hypothyroidism is an additional independent risk factor.

#### Corresponding Author:

Mohammed Abdulrahman Saeed  
Medical biochemistry Belarusian state University, Iraq.  
Email: [Maljubory146@gmail.com](mailto:Maljubory146@gmail.com)

Copyright © 2023 The Author(s). This is an open access article distributed under the Creative Commons Attribution License, (<http://creativecommons.org/licenses/by/4.0/>) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## 1. INTRODUCTION

The prevalence of thyroid dysfunction in the general population, especially in the older age group, is quite high (from 10–12 to 20%) [1], [2]. Influencing the key stages of metabolism, thyroid hormones have complex multidirectional effects on the cardiovascular system [3], [4], [5], [6]. Both excess and deficiency

of thyroid hormones have a certain negative effect on myocardial cells, vascular wall, vascular endothelium, and blood lipid spectrum parameters [7], [8], [9]. Many effects of thyroid hormones on the heart and blood vessels have been well studied, and pathophysiological changes in thyroid dysfunction have been described in detail [10], [11], [12]. Obvious dysfunctions of the thyroid gland (both hypothyroidism and thyrotoxicosis) have a pathological effect on the heart and blood vessels, lipid metabolism, and the need to treat these conditions is beyond doubt [13], [14]. At the same time, the clinical significance of latent thyroid dysfunctions is still a matter of debate [15], [16]. At the same time, the question of the advisability of identifying and eliminating subclinical hypothyroidism in older people, including patients with coronary heart disease, remains particularly relevant and unresolved.

Metabolic syndrome (MS) is defined as a group of metabolic disorders represented by a number of risk factors for the development of cardiovascular disease and type 2 diabetes (DM2) [17]. Components associated with MS are abdominal fat deposition, arterial hypertension, carbohydrate metabolism disorders and dyslipidemia [18]. Obesity is the main component of MS and is considered the main pathogenic link of the syndrome complex [19]. It is known that the development of obesity is accompanied by the accumulation of adipose tissue not only in places of its physiological localization, but also in other organs [20]. Among the individuals showing signs of overweight and obesity, there are several subgroups with different metabolic phenotypes: three metabolically healthy phenotypes (with normal body weight, with overweight, with obesity) and three metabolically unhealthy phenotypes (With normal body weight, with overweight). Obesity. Phillips CM describes in detail the criteria currently used to define a metabolically healthy phenotype among children, adolescents, and adults [21]. Although metabolic health can be defined as the absence of insulin resistance, the current definition of metabolic health is based on the absence of MS (or some of its cardiac indicators dyslipidemia, impaired insulin resistance, hypertension) in people with MS. overweight. An additional criterion is a favorable inflammatory state, determined by the level of C-reactive protein [22].

A number of large studies examining the prevalence of thyroid dysfunction in the population (Wickham Study, Rotterdam Study) found an association between subclinical hypothyroidism and cardiovascular risk factors [23]. At the same time, according to the results of other studies, such associations were not revealed. The contribution of subclinical thyroid dysfunction to the development and maintenance of atherogenesis is still widely debated.

According to existing recommendations, the determination of the level of thyroid-stimulating hormone (TSH) is indicated for people who have or had a history of thyroid disease, their first-line relatives, women over 60 years of age, patients with type 1 diabetes and patients with atrial fibrillation. Recent studies have shown that a decrease in the functional activity of the thyroid gland is significantly more common in obese patients, in patients with impaired lipid metabolism, type 2 diabetes mellitus, and coronary heart disease [24]. Apparently, these categories of patients also need to determine the level of TSH for timely detection and treatment of thyroid dysfunction. In this regard, it is relevant to study the relationship between the level of functional activity of the thyroid gland and the severity of atherosclerotic changes in patients with IHD. Obtaining these data is necessary to resolve the issue of the advisability of expanding the indications for determining the level of TSH.

## 2. METHODOLOGY

This study was analysed according to previous research studies, and patients were recruited for the study, and the study included patients diagnosed with hypothyroidism and to determine the prevalence of subclinical hypothyroidism in patients who were conducting a study examining TSH levels according to the principles proposed by the World Health Organization in 1968 All patients were assessed in terms of age at the time of examination, age and body weight at the time of detection of cardiovascular disease, and family history of diabetes and cardiovascular disease. According to blood records and the results of previous studies, the presence of hypertension, coronary heart disease, and chronic complications of diabetes mellitus was evaluated. Smoking history and the nature of treatment were taken into account.

### 3. RESULTS AND DISCUSSION

In recent decades, the role of thyroid dysfunction in the pathogenesis of metabolic syndrome has been actively discussed and a decrease in the functional activity of the thyroid gland is often detected in the elderly and especially in patients with obesity, dyslipidemia, type 2 diabetes, and according to some authors Subclinical hypothyroidism. It is an additional risk factor for cardiovascular disease. The first part of the work was a cohort study on hypothyroidism in patients with hypothyroidism. It should be noted that there have been no studies on hypothyroidism in patients. In this study, patients and residents in Iraqi hospitals were examined for underlying disorders (subclinical) in their Thyroid. As mentioned above, the percentage of individuals with thyroid dysfunction in the population depends to some extent on the area's iodine supply level and on the upper limit of the TSH norm. Thus, a study in Colorado showed that 9% of the adult population had subclinical hypothyroidism. The Wickham study found subclinical hypothyroidism in 8% of women in the general group and in 10% of women over 55 years of age [25]. The Rotterdam study found 10.8% of subclinical hypothyroidism among women over the age of 60, with a positive correlation with multiple complications.

### 4. CONCLUSION

Survey results showed that thyroid dysfunction is more common in patients with coronary artery disease than in the general population. Especially often, a decrease in the functional activity of the thyroid gland is detected in females, women and men of the older age group, in patients with obesity and overweight, in patients with disorders of lipid metabolism and hyperhomocysteinemia. Decreased functional activity of the thyroid gland is associated with type 2 diabetes mellitus and the formation of arterial hypertension the research paper shows that subclinical hypothyroidism potentiates disorders of lipid metabolism, homocysteine metabolism, and contributes to the formation of overweight and obesity.

#### Acknowledgments

The authors have no specific acknowledgments to make for this research.

#### Funding Information

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

#### Author Contributions Statement

| Name of Author             | C | M | So | Va | Fo | I | R | D | O | E | Vi | Su | P | Fu |
|----------------------------|---|---|----|----|----|---|---|---|---|---|----|----|---|----|
| Mohammed Abdulrahman Saeed | ✓ | ✓ | ✓  |    | ✓  | ✓ |   | ✓ | ✓ | ✓ | ✓  |    | ✓ | ✓  |

C : Conceptualization

M : Methodology

So : Software

Va : Validation

Fo : Formal analysis

I : Investigation

R : Resources

D : Data Curation

O : Writing - Original Draft

E : Writing - Review & Editing

Vi : Visualization

Su : Supervision

P : Project administration

Fu : Funding acquisition

#### Conflict of Interest Statement

The authors declare that there are no conflicts of interest regarding the publication of this paper.

#### Informed Consent

All participants were informed about the purpose of the study, and their voluntary consent was obtained prior to data collection.

### Ethical Approval

The study was conducted in compliance with the ethical principles outlined in the Declaration of Helsinki and approved by the relevant institutional authorities.

### Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

## REFERENCES

- [1] Misra and L. Khurana, 'Obesity, and the metabolic syndrome in developing countries', *J Clin Endocrinol Metab*, vol. 93, pp. S9-30, 2008. [doi.org/10.1210/jc.2008-1595](https://doi.org/10.1210/jc.2008-1595)
- [2] J. Lu, L. Wang, M. Li, Y. Xu, Y. Jiang, and W. Wang, 'Metabolic Syndrome Among Adults in China: The 2010 China Noncommunicable Disease Surveillance', *J Clin Endocrinol Metab*, vol. 102, no. 2, pp. 507-515, 2017.
- [3] D. Gu, K. Reynolds, X. Wu, J. Chen, X. Duan, and R. F. Reynolds, 'Prevalence of the metabolic syndrome and overweight among adults in China', *Lancet*, no. 9468, pp. 1398-1405, 2005. [doi.org/10.1016/S0140-6736\(05\)66375-1](https://doi.org/10.1016/S0140-6736(05)66375-1)
- [4] E. S. Ford, 'Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence', *Diabetes Care*, vol. 28, no. 7, pp. 1769-1778, 2005. [doi.org/10.2337/diacare.28.7.1769](https://doi.org/10.2337/diacare.28.7.1769)
- [5] S. Xu, B. Gao, Y. Xing, M. J. Bao, and J. Zhang, 'Gender differences in the prevalence and development of metabolic syndrome in Chinese population with abdominal obesity', *PloS One*, vol. 8, no. 10, 2013. [doi.org/10.1371/journal.pone.0078270](https://doi.org/10.1371/journal.pone.0078270)
- [6] Q. B. Song, Y. Zhao, Y. Q. Liu, J. Zhang, S. J. Xin, and G. H. Dong, 'Sex difference in the prevalence of metabolic syndrome and cardiovascular-related risk factors in urban adults from 33 communities of China: The CHPSNE study', *Diabetes Vasc Dis Res*, vol. 12, no. 3, pp. 189-198, 2015. [doi.org/10.1177/1479164114562410](https://doi.org/10.1177/1479164114562410)
- [7] V. Guarner-Lans, M. E. Rubio-Ruiz, I. Pérez-Torres, and B. De Maccarthy, 'Relation of aging and sex hormones to metabolic syndrome and cardiovascular disease', *Exp Gerontol*, vol. 46, no. 7, pp. 517-523, 2011. [doi.org/10.1016/j.exger.2011.02.007](https://doi.org/10.1016/j.exger.2011.02.007)
- [8] M. Erdogan, A. Canataroglu, S. Ganidagli, and M. Kulaksizoglu, 'Metabolic syndrome prevalence in subclinical and overt hypothyroid patients and the relation among metabolic syndrome parameters', *J Endocrinol Invest*, vol. 34, no. 7, pp. 488-492, 2011.
- [9] A. C. Waring, N. Rodondi, S. Harrison, A. M. Kanaya, E. M. Simonsick, and I. Miljkovic, 'Thyroid function and prevalent and incident metabolic syndrome in older adults: the Health, Ageing and Body Composition Study', *Clin Endocrinol*, vol. 76, no. 6, pp. 911-918, 2012. [doi.org/10.1111/j.1365-2265.2011.04328.x](https://doi.org/10.1111/j.1365-2265.2011.04328.x)
- [10] S. Ruhla, M. O. Weickert, A. M. Arafat, M. Osterhoff, F. Isken, and J. Spranger, 'A high normal TSH is associated with the metabolic syndrome', *Clin Endocrinol*, vol. 72, no. 5, pp. 696-701, 2010. [doi.org/10.1111/j.1365-2265.2009.03698.x](https://doi.org/10.1111/j.1365-2265.2009.03698.x)
- [11] J. Y. Oh, Y. A. Sung, and H. J. Lee, 'Elevated thyroid stimulating hormone levels are associated with metabolic syndrome in euthyroid young women', *Korean J Internal Med*, vol. 28, no. 2, pp. 180-186, 2013. [doi.org/10.3904/kjim.2013.28.2.180](https://doi.org/10.3904/kjim.2013.28.2.180)
- [12] J. Garduño-García Jde, U. López-Carrasco, P. Mendoza, M. E. Mehta, and R. Arellano-Campos, 'TSH and free thyroxine concentrations are associated with differing metabolic markers in euthyroid subjects', *Eur J Endocrinol*, vol. 163, no. 2, pp. 273-278, 2010. [doi.org/10.1530/EJE-10-0312](https://doi.org/10.1530/EJE-10-0312)
- [13] O. Bakiner, E. Bozkirli, G. Cavlak, K. Ozsahin, and E. Ertorer, 'Are plasma thyroid-stimulating hormone levels associated with degree of obesity and metabolic syndrome in euthyroid obese patients? A Turkish cohort study ISRN Endocrinol', *A Turkish cohort study ISRN Endocrinol*, 2014. [doi.org/10.1155/2014/803028](https://doi.org/10.1155/2014/803028)

[14] R. H. Song, B. Wang, Q. M. Yao, Q. Li, X. Jia, and J. A. Zhang, 'The Impact of Obesity on Thyroid Autoimmunity and Dysfunction: A Systematic Review and Meta-Analysis', *Thyroid Autoimmunity and Dysfunction: A Systematic Review and Meta-Analysis*. *Front Immunol*, vol. 10, 2019. [doi.org/10.3389/fimmu.2019.02349](https://doi.org/10.3389/fimmu.2019.02349)

[15] Y. Y. Liu and G. A. Brent, 'Thyroid hormone crosstalk with nuclear receptor signaling in metabolic regulation', *Trends Endocrinol Metab: TEM*, vol. 21, no. 3, pp. 166-173, 2010. [doi.org/10.1016/j.tem.2009.11.004](https://doi.org/10.1016/j.tem.2009.11.004)

[16] Y. Li et al., 'Efficacy and safety of long-term universal salt iodization on thyroid disorders: Epidemiological evidence from 31 provinces of mainland China', *Thyroid*, vol. 30, no. 4, pp. 568-579, Apr. 2020. [doi.org/10.1089/thy.2019.0067](https://doi.org/10.1089/thy.2019.0067)

[17] 'Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report', National Cholesterol Education Program (NCEP) Expert Panel on Detection, vol. 106, no. 25, pp. 3143-3421, 2002. [doi.org/10.1161/circ.106.25.3143](https://doi.org/10.1161/circ.106.25.3143)

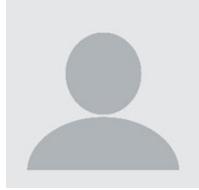
[18] K. G. Alberti, R. H. Eckel, S. M. Grundy, P. Z. Zimmet, J. I. Cleeman, and K. A. Donato, 'Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute', in *World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity*, vol. 120, American Heart Association, 2009, pp. 1640-1645. [doi.org/10.1161/CIRCULATIONAHA.109.192644](https://doi.org/10.1161/CIRCULATIONAHA.109.192644)

[19] Y. K. Lee, J. E. Kim, H. J. Oh, K. S. Park, S. K. Kim, and S. W. Park, 'Serum TSH level in healthy Koreans and the association of TSH with serum lipid concentration and metabolic syndrome', *Korean J Internal Med*, vol. 26, no. 4, pp. 432-439, 2011. [doi.org/10.3904/kjim.2011.26.4.432](https://doi.org/10.3904/kjim.2011.26.4.432)

[20] M. Benseñor, A. C. Goulart, M. Mdel, C. De Miranda, É. J. Santos, and I. S. Lotufo, 'Thyrotropin Levels, Insulin Resistance, and Metabolic Syndrome: A Cross-Sectional Analysis in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil)', *Metab Syndrome Relat Disord*, vol. 13, pp. 362-369, 2015. [doi.org/10.1089/met.2015.0045](https://doi.org/10.1089/met.2015.0045)

[21] Y. Huang and L. C. Hwang, 'The Association of Thyroid Hormones and TSH with the Metabolic Syndrome in Euthyroid Taiwanese Individuals', *Euthyroid Taiwanese Individuals. Endocr Prac: Off J Am Coll Endocrinol Am Assoc Clin Endocrinologists*, vol. 22, no. 11, pp. 1303-1309, 2016. [doi.org/10.4158/EP161260.OR](https://doi.org/10.4158/EP161260.OR)

[22] M. Pellegrini, V. Pallottini, R. Marin, and M. Marino, 'Role of the sex hormone estrogen in the prevention of lipid disorder', *Curr medicinal Chem*, vol. 21, no. 24, pp. 2734-2742, 2014. [doi.org/10.2174/092986732166140303123602](https://doi.org/10.2174/092986732166140303123602)


[23] H. T. Park, G. J. Cho, K. H. Ahn, J. H. Shin, S. C. Hong, and T. Kim, 'Thyroid stimulating hormone is associated with metabolic syndrome in euthyroid postmenopausal women', *Maturitas*, vol. 62, no. 3, pp. 301-305, 2009. [doi.org/10.1016/j.maturitas.2009.01.007](https://doi.org/10.1016/j.maturitas.2009.01.007)

[24] S. Tognini, A. Polini, G. Pasqualetti, S. Ursino, N. Caraccio, and M. Ferdeghini, 'Age and gender substantially influence the relationship between thyroid status and the lipoprotein profile: results from a large cross-sectional study', *Thyroid: Off J Am Thyroid Assoc*, vol. 22, no. 11, pp. 1096-1103, 2012. [doi.org/10.1089/thy.2012.0013](https://doi.org/10.1089/thy.2012.0013)

[25] Y. Guo, M. Zhao, T. Bo, S. Ma, Z. Yuan, and W. Chen, 'Blocking FSH inhibits hepatic cholesterol biosynthesis and reduces serum cholesterol', *Cell Res*, vol. 29, no. 2, pp. 151-166, 2019. [doi.org/10.1038/s41422-018-0123-6](https://doi.org/10.1038/s41422-018-0123-6)

**How to Cite:** Mohammed Abdulrahman Saeed. (2023). Studying of thyroid dysfunction on patients with metabolic syndrome. *Journal of Prevention, Diagnosis and Management of Human Diseases (JPDMHD)*, 3(2), 60-65. <https://doi.org/10.55529/jpdmhd.32.60.65>

**BIOGRAPHIE OF AUTHOR**

|                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <p><b>Mohammed Abdulrahman Saeed</b>, is a medical biochemist affiliated with the Belarusian State University, Iraq. His research interests include endocrine metabolism, thyroid dysfunction, and the biochemical mechanisms linking hormonal imbalance with metabolic syndrome. He has participated in several clinical and biochemical studies exploring thyroid function in metabolic and cardiovascular disorders. Mr. Saeed aims to contribute to early diagnosis and management strategies for thyroid-related metabolic diseases. Email: <a href="mailto:Maljubory146@gmail.com">Maljubory146@gmail.com</a></p> |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|