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Abstract: Many real-world optimization issues typically have multiple competing goals. 

There is generally no solution in those multi-objective optimization problems that optimizes 

all objective functions at the same time. Rather, "efficient" in terms of all objective 

function’s solutions known as Pareto optimum solutions are presented. We typically have a 

large number of Pareto-optimal options. As a result, we must choose a final solution from 

among Pareto optimal solutions while considering the objective function balance; this 

process is known as "trade-off analysis." It is not hyperbole to state that trade-off analysis 

is the most crucial task in multi-objective optimization. As a result, the methodology's ease 

of use and comprehension for trade-off analysis should be highlighted. 

The set of Pareto optimal solutions in the objective function space, or Pareto frontier, can be 

represented somewhat simply in circumstances when there are two or three objective 

functions. We can fully understand the trade-off relationship between objectives when we 

see Pareto boundaries. Thus, in scenarios with two or three objectives, it would be the most 

appropriate technique to represent Pareto borders. Reading the trade-off relationship 

between objectives with three dimensions, however, may be challenging. Nonetheless, Pareto 

frontier cannot be represented in situations where there are more than three objectives. In 

this case, interactive techniques can assist us in performing a local trade-off analysis that 

reveals a "certain" Pareto optimal option. Many techniques have been devised, with 

variations in which the Pareto optimal solution is displayed. The main concerns of such 

multi-objective optimization techniques, especially as they relate to engineering design 

problems, are covered in this study. 

 

Keywords:  Multi-Objective Optimization, Pareto Frontier, Evolutionary Algorithms. 

 

 

http://journal.hmjournals.com/index.php/JECNAM
https://doi.org/10.55529/jecnam.43.18.33
http://creativecommons.org/licenses/by/4.0/
mailto:rbsoni68@gmail.com
mailto:ks.pragya@gmail.com
mailto:dharamender.2015dr7@am.ism.ac.in


Journal of Electronics, Computer Networking and Applied Mathematics   

ISSN: 2799-1156 

Vol: 04, No. 03, April-May 2024 

http://journal.hmjournals.com/index.php/JECNAM 

DOI: https://doi.org/10.55529/jecnam.43.18.33 

 
 

 

  

Copyright The Author(s) 2024.This is an Open Access Article distributed under the CC BY 

license. (http://creativecommons.org/licenses/by/4.0/)                                                            19 

1. INTRODUCTION 

 

The following is how multi-objective programming challenges are expressed- 

  

Minimization f (x) ≡{f1(x), f2(x)……… fr(x)}      Over  x ∈ X 

 

The constraint set X can be written as – 

gj (x)≤ 0     j= 1,2,3……….m 

The constraint set X is also a subset of Rn. 

For the Multi-Objective Optimization, the Pareto solutions can be defined as following- 

 

When x̂ is the only superior answer x ∈ X, it is said to be Pareto optimum; that is, if 

f (x) ≤/ f (x̂ )  for each x≠ x̂ ∈ X 

 

There might be a lot of Pareto solutions in general. They come to a final conclusion by 

considering the overall balance of all the factors. This is a decision maker's (abbreviated as 

DM) value judgment dilemma. A complete balancing of criteria is commonly referred to as a 

trade-off. It should be mentioned that there are a lot of criteria—let's say more than 100—in 

certain real-world issues, such camera lens design and cable stayed bridge erection 

management. As a result, it's critical to create efficient techniques that enable DM to trade-off 

with ease, especially in situations with a large number of criteria. Interactive multi-objective 

programming asks the DM questions about his or her values while working together to find a 

solution. Accordingly, a number of noteworthy techniques were created in the 1980s: Of these, 

the aspiration level approach is now acknowledged as being particularly effective in practice 

because: 

(i) aspiration levels accurately reflect DM's wish; 

(ii) it does not require DM's judgment to be consistent;  

(iii) aspiration levels function as a probe more effectively than weight for objective functions. 

 

We shall talk about the weighting method's challenges in the following, as it is a popular 

approach to traditional goal programming. 

 

2. RELATED WORK  

 

2.1 What Makes the Weighting Method not so Effective? 

The value assessment of DM is the basis for the ultimate decision in multi-objective 

programming issues. Therefore, it matters how we extract DM's value assessment. The vector 

objective function is scalarized in many real-world scenarios so that the DM value judgment 

can be included. 

The linearly weighted sum is the scalarization method that is most widely known: 

 

∑ .r
i=1 wifi(x)…………………………(i) 

DM's value judgment is indicated by the weight. This kind of scalarization has a significant 

disadvantage, while being widely utilized in many real-world scenarios. In particular, because 
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of the "duality gap," it cannot give a solution among sunken portions of the Pareto surface in 

nonconvex circumstances. Even in convex situations, like linear scenarios, we can only obtain 

a vertex of the Pareto surface if we apply the well-known simplex approach in order to find a 

point in the middle of a line segment between two vertices. This suggests that the linearly 

weighted sum may not always be able to give DM the best solution, depending on how complex 

the situation is. 

In classical goal programming (Charnes-Cooper, 1961), the decision maker's (DM) preference 

is expressed as a metric function from the goal f ∗. For example, the following is well-known:  

 

(∑  r
i=1  wi|fi(x) − fi

∗|p)1/p…………………………….(ii) 

 

The weight  wi, the value of p, and the goal value  fi
∗ all represent DM's desire. By minimizing 

the function (2.2), a Pareto solution among a sunken portion of the Pareto surface can be 

produced if the value of p is selected suitably. Nevertheless, figuring out what values are 

appropriate in advance is typically challenging. Furthermore, even though the objective is 

underestimated, the solution minimizing (2.2) cannot be superior to the aim  𝐟∗. 

One of the biggest problems with goal programming is that individuals often think that 

changing the weight would lead to a positive outcome, which is not the case. As the following 

example illustrates, it should be noted that there is no positive link between the weight  wi  and 

the value  fi(x̂), which corresponds to the final solution x̂. 

 

Example 2.1 Given the equations  𝑦1 = 𝑓1(𝑥), 𝑦2 = 𝑓2(𝑥) and 𝑦3 = 𝑓3(𝑥), the feasible region 

in the objective space can be represented as follows: 

 

{(𝑦1, 𝑦2, 𝑦3) ∣ (𝑦1 − 1))
2

+ (𝑦2 − 1)2 + (𝑦3 − 1)2 ≤ 1} .  

 

Assume that (𝑦1
∗, 𝑦2

∗, 𝑦3
∗) = (0,0,0) is the objective. With p=1 and w1= 1,w2=1 and w3 =1, the 

solution that minimizes the metric function (ii) is (𝑦1, 𝑦2, 𝑦3) = (1 − 1/√3, 1 − 1/√3, 1 −

1/√3). Let's say that DM want to significantly reduce the values of f1 and f2, changing the 

weight to  𝑤1
′ = 10, 𝑤2

′ = 2, 𝑤3
′ = 1. The new weight's corresponding solution is (1 −

10/√105, 1 − 2/√105, 1 − 1/√105). Observe that although though DM intends to improve 

it and has raised the weight of f2 up to twice, the value of f2 is worse than it was before. Someone 

can believe that the lack of weight normalization is the cause of this. We therefore use  𝑤1 +
𝑤2 + 𝑤3 = 1 to standardize the weight. The refreshed weight with the same normalization is  

𝑤1
′ = 10/13, 𝑤2

′ = 2/13, 𝑤3
′ = 1/13. The original weight, normalized in this manner, is 𝑤1 =

𝑤2 = 𝑤3 = 1/3. 

 It is evident that  𝑤2
′  is smaller than w2. Next, raise w2 to a normalized weight greater than 1/3. 

Set the unnormalized weights 𝑤1 = 10, 𝑤2 = 7 and 𝑤3 = 1 in order to achieve this. We have 

a solution  (1 − 10/√150, 1 − 7/√150, 1 − 1/√150) with this new weight. Even if the 

acquired solution is better than the previous one, the normalized weight  𝑤2
′′ = 7/18  is still 

more than the original one (=1/3). 

It is normally quite difficult to change the weight in order to get the desired result, as the 

example above makes clear. As a result, it would appear preferable to use DM's ambition level 
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as the probe rather than weight. The limitations of traditional goal programming can be 

addressed by developing interactive multi-objective programming techniques based on 

aspiration levels. One of them, the satisficing trade-off method established by the author 

(Nakayama 1984), will be covered in the part that follows. 

 

2.2 Trade-off Satisficing Method 

The aspiration level at the k-th iteration  𝑓‾𝑘  is altered in the aspiration level method in the 

following ways: 

 

𝑓‾𝑘+1 = 𝑇 ∘ 𝑃(𝑓‾𝑘)………………… (I) 

  

The Pareto solution that is, in some way, closest to the specified aspiration level  𝑓‾𝑘 is chosen 

in this case by operator P. If DM does not agree to a compromise with the proposed solution 

𝑃(𝑓‾𝑘), the trade-off operator T modifies the k-th aspiration level  𝑓‾𝑘. Naturally, because 𝑃(𝑓‾𝑘) 

is a Pareto solution, there isn't a workable solution that improves on 𝑃(𝑓‾𝑘) for every criterion. 

As a result, DM must make trade-offs between criteria in order to improve on some of them. 

𝑇 ∘ 𝑃(𝑓‾𝑘) is chosen as the new aspiration level based on this trade-off. This approach is carried 

out repeatedly until DM finds a workable answer. This concept is applied in the satisficing 

trade-off approach (Nakayama 1984) and DIDASS (Grauer et al. 1984). The satisficing trade-

off technique offers a device based on the sensitivity analysis, whereas DIDASS leaves the 

trade-off to the heuristics of DM. 

 

2.3 On the Operation P 

Some auxiliary scalar optimization performs the operation which yields a Pareto solution 

𝑃(𝑓‾𝑘)  nearest to𝑓‾𝑘. Sawaragi-Nakayama-Tanino (1985) demonstrated that the Tchebyshev 

norm type is the only scalarization technique that yields a Pareto solution for any problem, 

regardless of its structure. On the other hand, the Tchebyshev norm type scalarization function 

produces both a Pareto and a weak Pareto solution. Weak Pareto solutions are not always 

"efficient" as a solution in decision making because there is a chance that another solution 

exists that improves a criterion while fixing others. The augmented Tchebyshev type 

scalarization function of the following kind can be applied to eliminate weak Pareto solutions: 

 

𝑚𝑎𝑥
1≤𝑖≤𝑟

 𝑤𝑖(𝑓𝑖(𝑥) − 𝑓‾𝑖) + 𝛼 ∑  𝑟
𝑖=1 𝑤𝑖𝑓𝑖(𝑥)……………….(II) 

 

where 𝛼 is often set to a minimally significant positive value, such as 10−6. 

 

Theorem 2.1 (Tanino- Nakayama )   Minimizing (II) is a correctly Pareto optimum solution to 

(MOP) for arbitrary 𝑤 ≥ 0 and   𝛼 > 0, �̂� ∈ 𝑋. On the other hand, if �̂�  minimizes (II) over X, 

then there exist 𝑤 > 0, 𝛼 > 0, and  𝑓‾ such that �̂� is a correctly Pareto optimum solution to 

(MOP). 
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Fig. 1 Pareto Solutions' Differences by (III) and (IV) 

 

Typically, the weight 𝑤𝑖 is provided as follows: An ideal value, denoted as  𝑓𝑖
∗, is often provided 

so that 𝑓𝑖
∗ < 𝑀𝑖𝑛 {𝑓𝑖(𝑥) ∣ 𝑥 ∈ 𝑋}. In this case, we set 

 

                                    𝑤𝑖
𝑘 =

1

𝑓‾𝑖
𝑘−𝑓𝑖

∗…………………………………..(III) 

 

If it is preferred that the weight remain the same despite the aspiration level changing, it can 

be provided by 

 

𝑤𝑖
𝑘′

=
1

𝑓∗𝑖−𝑓𝑖
∗  ……………………………………(IV) 

 

In this case, the nadir value, 𝑓∗𝑖, is typically can be written as- 

 

𝑓∗𝑖 = 𝑚𝑎𝑥
1≤𝑗≤𝑟

 𝑓𝑖(𝑥𝑗
∗)…………………………………….(V) 

 

While 

 

𝑥𝑗
∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝑥∈𝑋
 𝑓𝑗(𝑥)…………………………………………(VI) 

 

Since (II) is not smooth, the minimizing of (II) using (III) or (IV) is typically accomplished by 

resolving the analogous optimization problem as follows: 

 

Minimize 

𝑧 + 𝛼 ∑  

𝑟

𝑖=1

𝑤𝑖𝑓𝑖(𝑥) 

subject to 
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𝑤𝑖
𝑘(𝑓𝑖(𝑥) − 𝑓‾𝑖

𝑘) ≤ 𝑧

𝑥 ∈ 𝑋.
.......................................................(VII) 

 

Note-   Fig. 1 shows the variation in solutions to (Q) for two types of weights (III) and (IV). It 

is possible to substitute  𝑓𝑖
∗  for 𝑓‾𝑖

𝑘  in the constraint (VII) of the auxiliary min-max problem 

(Q) with the weight by (III) without affecting the solution. Since we have 

 
𝑓𝑖(𝑥)−𝑓𝑖

∗

𝑓‾𝑖
𝑘−𝑓𝑖

∗ =
𝑓𝑖(𝑥)−𝑓‾𝑖

𝑘

𝑓‾𝑖
𝑘−𝑓𝑖

∗ + 1………………..(VIII) 

 

2.4 Regarding Operation T 

If the DM is not happy with the answer for 𝑃(�̅�𝑘), then he or she is asked to respond with  

�̅�𝑘+1, which is their new aspiration level. Assume that xk represents the Pareto solution that 

was achieved through projection 𝑃(�̅�𝑘). Then, organize the objective functions into three 

categories: 

There are three categories of criteria: (i) those that need further improvement; (ii) those that 

can be loosened; and (iii) those that are fine as they are. 

For each class, let  𝐼𝐼
𝑘 , 𝐼𝑅

𝑘 𝑎𝑛𝑑 𝐼𝐴
𝑘 and  stand for the index set, respectively. For all i in 𝐼𝐼

𝑘, 𝑓‾𝑖
𝑘+1 <

𝑓𝑖(𝑥𝑘) is evident. Typically, 𝑓‾𝑖
𝑘+1 = 𝑓𝑖(𝑥𝑘)is set for 𝑖 ∈ 𝐼𝐴

𝑘. DM must consent to raise the value 

of  𝑓‾𝑖
𝑘+1 for 𝑖 ∈ 𝐼𝑅

𝑘. It should be emphasized that in order to improve  𝑓𝑖 for 𝑖 ∈ 𝐼𝐼
𝑘, a suitable 

sacrifice of 𝑓𝑗 for 𝑗 ∈ 𝐼𝑅
𝑘 is required. 

 

Example 2.2     Think about the identical issue as in Example 2.1: Given the equations  𝑦1 =
𝑓1(𝑥), 𝑦2 = 𝑓2(𝑥) and 𝑦3 = 𝑓3(𝑥), the feasible region in the objective space can be represented 

as follows: 

{(𝑦1, 𝑦2, 𝑦3) ∣ (𝑦1 − 1))
2

+ (𝑦2 − 1)2 + (𝑦3 − 1)2 ≤ 1}. 

 

Assume that  (𝑦1
∗, 𝑦2

∗, 𝑦3
∗) = (0,0,0) is the ideal point and (𝑦∗1, 𝑦∗2, 𝑦∗3) = (1,1,1) is the nadir 

point. As a result, we have 𝑤1 = 𝑤2 = 𝑤3 = 1.0. using (VI). Assume that (𝑦‾1
1, 𝑦‾2

1, 𝑦‾3
1) =

(0.4,0.4,0.4) is the initial aspiration level. Hence, (𝑦1
1, 𝑦2

1, 𝑦3
1) = (0.423,0.423,0.423)  is the 

answer to (Q). Let's say that DM wants to change the aspiration level to 𝑦‾1
2 = 0.35 and 𝑦‾2

2 =
0.4 by significantly lowering the values of f1 and f2. It is not possible to enhance all of the 

criteria because the current solution, (𝑦1
1, 𝑦2

1, 𝑦3
1) = (0.423,0.423,0.423)  is already Pareto 

optimum. 

 

Consequently, let's say that DM consents to easing f3 and adopting 𝑦‾3
2 = 0.5 as the new 

aspiration goal. The answer to (Q) with this new ambition level is  (𝑦1
2, 𝑦2

2, 𝑦3
2) =

(0.366,0.416,0.516). It should be highlighted that the acquired solution is more improved than 

the previous one, even though it slightly falls short of the aspiration level of f1 and f2. The 

reason f1 and f2's improvement falls short of DM's desired level is because f3's relaxation is 

insufficient to offset f1 and f2's improvement. By conducting a purposeful trade-off analysis, 

DM may quickly find a satisfying solution using the satisficing trade-off method. 

http://journal.hmjournals.com/index.php/JECNAM
https://doi.org/10.55529/jecnam.43.18.33
http://creativecommons.org/licenses/by/4.0/


Journal of Electronics, Computer Networking and Applied Mathematics   

ISSN: 2799-1156 

Vol: 04, No. 03, April-May 2024 

http://journal.hmjournals.com/index.php/JECNAM 

DOI: https://doi.org/10.55529/jecnam.43.18.33 

 
 

 

  

Copyright The Author(s) 2024.This is an Open Access Article distributed under the CC BY 

license. (http://creativecommons.org/licenses/by/4.0/)                                                            24 

 2.5 The Swapping of Constraints and Objectives  

To formulate the auxiliary scalarized optimization problem (Q), substitute 𝛽𝑖𝑧 for the right-

hand side of equation (VII). 

 

𝑤𝑖(𝑓𝑖(𝑥) − 𝑓‾𝑖) ≤ 𝛽𝑖𝑧 …………………………….(IX) 

 

It is clear that the function  𝑓𝑖 is regarded as an objective function if  𝛽𝑖 = 1, meaning that while 

the level of  𝑓𝑖 should ideally be higher, the ambition level  𝑓‾𝑖 need not always be reached. 

Conversely, 𝑓 𝑖is regarded as a constraint function for which the ambition level  𝑓‾𝑖should be 

assured if  𝛽𝑖 = 0. Almost never do we regard the function of the objective and the restriction 

to be fixed from the outset in real problems; instead, we typically desire to swap them around 

based on the circumstances. This is simply accomplished using formula (IX) (Korhonen 1987). 

Furthermore, fi may have a role in the midst of the goal and constraint, which is not a complete 

objective nor a complete constraint, if the value of  𝛽𝑖 is set between 0 and 1 (Kamenoi et al. 

1992). This works wonders in a lot of real-world scenarios as well. 

 

Applications  

Multi-objective interactive programming techniques have been used to solve many real-world 

issues. Eschenauer et al. provide some excellent examples of engineering applications (1990). 

Additionally, the satisficing trade-off approach has been used to solve a number of actual 

issues: 

 

1. Mixing   

 livestock feed formulation. 

 materials of Plastic. 

 cement manufacturing. 

 portfolio formation. 

 

2. Designing 

 camera lens. 

 cable-stayed bridge erection management. 

 

3. Organizing 

 long-term atomic power plant planning. 

 In the steel industry, string selection is scheduled. 

 

A basic explanation of how the satisficing trade-off strategy is applied to cable-stayed bridge 

erection management is provided below. The following standards are taken into account for 

accuracy control when building a cable-stayed bridge: 

 residual camber error at every node, 

 how many cables need to be changed, 

 residual inaccuracy for every cable tension, 

 the shim adjustment amount for every cable. 
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The residual error in each cable tension and that in each camber are both linear functions of the 

amount of shim adjustment because the change in cable rigidity is negligible enough to be 

overlooked in relation to shim adjustment. 𝑥𝑖𝑘  is the change in tension of the i-th cable as a 

result of a unit change in the k-th cable length, and 𝛥𝑇𝑖 (𝑖 = 1, … , 𝑛) is defined as the difference 

between the planned and measured tension values with n as the number of cables in use. 

Following the shim modification, the residual cable tension error is given by- 

 

𝑝𝑖 = |𝛥𝑇𝑖 − ∑  

𝑛

𝑘=1

 𝑥𝑖𝑘𝛥𝑙𝑘|  (𝑖 = 1, … , 𝑛) 

 

Let m be the number of nodes, 𝑦𝑗𝑘 the camber change at the j-th node brought on by the k-th 

cable length changing by a unit, and 𝛥𝑧𝑗  (𝑗 = 1, … , 𝑚) the difference between the specified 

and measured camber values. Next, assuming the shim adjustments of 𝛥𝑙1, … , 𝛥𝑙𝑛, the residual 

error in the camber is given by 

 

𝑞𝑗 = |𝛥𝑍𝑗 − ∑  

𝑛

𝑘=1

 𝑦𝑗𝑘𝛥𝑙𝑘|  (𝑗 = 1, … , 𝑚) 

 

Furthermore, the shim adjustment amount can be regarded as an objective function of 

 

𝑟𝑖 = |𝛥𝑙𝑖| (𝑖 = 1, … , 𝑛) 
 

Furthermore, the following are the top and lower limits of shim adjustment built into the cable 

anchorage structure: 

 

𝛥𝑙𝐿𝑖 ≤ 𝛥𝑙𝑖 ≤ 𝛥𝑙𝑈𝑖 (𝑖 = 1, … , 𝑛) 

 

 
Fig. 2 System for Erection Management in Cable-stayed Bridges 
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Fig. 3 Erection Management System outcome 

 

Using the satisficing trade-off strategy, the monitor output of the cable stayed bridge erection 

management system is shown in Fig. 2, and the result is shown in Fig. 3. Graphs display the 

shim adjustment amount in addition to the residual error for each criterion. To enter the 

ambition level on the graph, use a mouse. Similar to this, once the auxiliary min-max problem 

has been resolved, a graph depicts the Pareto solution based on the aspiration level. This 

method is continued until the designer gets the appropriate shim-adjustment. Notable features 

are the visual information on criterion trade-off's ease of use and the designer's ease of 

operation. 

 The software was utilized for actual bridge construction projects, including as the 1992 

construction of the Karasuo Harp Bridge in Kita-Kyusyu City and the Swan Bridge in Ube 

City. 

 

2.6 Pareto Frontiers Generation  

It is optimal to give Pareto frontiers when working with two or three objective functions if 

evaluating each one doesn't require a lengthy time. This allows DM to fully comprehend the 

trade-off relationship between the objectives. Since we find it more difficult to comprehend the 

trade-off relation for three-dimensional Pareto frontiers without rotation, it would be most 

effective to illustrate Pareto frontiers in scenarios where there are two objectives. The constraint 

transformation method, sometimes referred to as the \epsilon constrained method in some 

books, can be used to achieve this goal. Early multi-objective optimization research 

demonstrates the use of this strategy (Edgeworth [6]). Since a rough but reasonable 

approximation of Pareto limits can usually be obtained at 10–20 sample values of the right 

hand side of the objective function translated into a constraint, the method works well for our 

purpose, as long as each optimization doesn't take a lengthy time. However, if the auxiliary 

optimization problems are difficult to solve with traditional optimization tools (e.g., if the 

problems are severely nonlinear with multi-modal, combinatorial, nonsmoothed, and so on), 

then the constraint transformation approach becomes challenging to depict the Pareto frontier. 
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3. METHODOLOGY 

  

The study of using evolutionary algorithms to determine Pareto frontiers has advanced 

significantly in recent years. Evolutionary algorithms have been found to perform 

exceptionally well, especially when it comes to multi-modal, discrete, and nonsmooth objective 

function optimization. While the constraint transformation approach can be used to apply 

evolutionary algorithms for optimization, the primary goal of evolutionary algorithm research 

is to directly obtain Pareto frontiers. The goal of evolution is to get individuals closer to the 

Pareto frontier. According to this approach, what matters are the rates at which individuals 

converge to the Pareto frontier and their degree of dispersion across the entire Pareto frontier. 

In order to do this, numerous researchers have published a variety of devices for fitness 

functions and evolutionary operators. 

The ranking approach  is one of the most used evolutionary techniques. While various 

techniques have been devised to assess the diversity of individuals on the Pareto frontier, the 

fundamental concept is in measuring each individual's distance from the frontier in relation to 

the number of dominant individuals. Nevertheless, the rank does not reflect the actual 

"distance" between each person and the Pareto frontier. The application of Data Envelopment 

Analysis (DEA) to produce the Pareto frontier was suggested by Arakawa et al. [1]. DEA was 

first created by Charnes et al. [3] to assess the effectiveness of decision-making units. Its goal 

is to solve a linear programming problem in order to determine the "distance" between each 

decision unit and the Pareto frontier. A portion of the convex hull of decision units approximates 

the true Pareto frontier. Multiple applications have shown that DEA gives the Pareto frontier 

with comparatively fewer people. This indicates that in engineering design issues, the Pareto 

frontier can be reached with fewer experiments (analysis). DEA cannot, however, generate a 

nonconvex Pareto frontier in its current form since it is predicated on the convex hull of 

decision units. In order to make DEA applicable to non-convex instances, Yun et al. extended 

DEA to GDEA (Generalized Data Envelopment Analysis) , and they then used GDEA to 

produce the Pareto frontier . Our experiences have shown that GDEA produces a well-

distributed Pareto frontier with fewer experiments (analysis). Additionally, Yun et al. attempt 

to apply several computational intelligence techniques, such as Support Vector Machine (SVM) 

, which was first created for machine learning  pattern categorization. The main goal of machine 

learning algorithms like Support Vector Machines (SVM) is to estimate the discriminant border 

for classification. Specifically, the recently developed \nu-SVM  is particularly useful for 

single-category situations. For issues in a single category, this condition allows one to estimate 

not just the Pareto border but also the feasible region. It has been noted that while SVM does 

not always offer the Pareto frontier, in certain situations it does. In this regard, more 

investigation ought to be done. 

 

4. RESULT AND DISCUSSION  

 

We will compare the strategies mentioned in this paragraph using many computer simulations. 

i) Problem related to Cantilever Beam 

 As illustrated in Fig. 4 , consider a cantilever design problem with two design variables: 

diameter (d) and length (l). P is the end load that the beam must support. The cantilever design 
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problem includes two competing design goals, namely, minimizing end deflection f2 and 

weight ̒f1, as well as two constraints: 

 

 

 

 

 

 

 

 

 

 

                                        Fig. 4 A Schematic for Cantilever Beam Design 

 

 
(A)                                                (B)                                                (C)-1 

 
                   (C)-2                                           (D) -1                                           (D) -2 
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(E)-1                              (E)-2                              (E)-3                                   (E) -4 

 

Fig. 5 Comparing the Outcomes with: (A) method of ε−constraint (B) method of satisficing 

trade-off (C) MOGA (D) GDEA (E) SVM  

 

 
(A)                                   (B)                                        (C) 

Fig. 6 Analyzing the Results in Relation to Problem ZDT4 by: (A) method of ε−constraint 

(B) method of satisficing trade-off (C) GDEA 

 

The final deflection 𝛿 is less than a given limit t 𝛿𝑚𝑎𝑥, and the resulting maximum stress  

𝜎𝑚𝑎𝑥 is less than the permitted strength 𝑆𝑦. The optimization problem is now stated in the 

following manner: 

 minimize f1(d, l): = ρ
πd2

4
l

 min f2(d, l): = δ =
64Pl3

3Eπd4

 s. t. σmax ≦ Sy

δ ≦ δmax

10 ≦ d ≦ 50,200 ≦ l ≦ 1000

 

 

when the following formula is used to determine the maximum stress: 
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σmax =
32Pl

πd3
 

 

The following is how the parameter values are used: 

 

ρ = 7800 kg/m3, P = 1kN,  E = 207GPa,

Sy = 300MPa,  δmax = 5 mm.
 

 

ii) ZDT4 Problem 

ZDT4, as an example that is difficult for MOGA to solve, is proposed by Zitzler, Deb, and 

Thiele. 
minimize

𝐱
f1(𝐱) = x1

f2(𝐱) = g(𝐱) × (1 − √
f1(𝐱)

g(𝐱)
)

 subject to g(𝐱) = 1 + 10(N − 1) + ∑  

N

i=2

  (xi
2 − 10cos (4πxi)) ,

x1 ∈ [0,1], xi ∈ [−5,5], i = 1,2, … , N(N = 10).

 

 

There are two objective functions and ten design variables. The solution to ZDT 4's Pareto 

optimum values is g(𝐱) = 1. 

 

Table 1 and Figs. 5 and 6 display the answers to our test issues. The computation was carried 

out using MATLAB version 6.5. 

 

Table. 1 Comparison of the quantity of calls to functions Beam Design Problem 

Method of 

ε−constraint 

Method of satisficing 

trade-off 
MOGA & GDEA SVM 

951 

Figure 5 (A) 

 

cf. # ε : 23 cases 

52 per one aspiration 

level 

Figure 5 (B) 

 

cf. # on the average 

1000 (10 generation× 100 

data ) 

Figure 5 (C)-1, (D)-1 

250 (5 generation× 50 

data) 

Figure 5 (E)-1 

500 (10 generation 50 

data) 

Figure 5 (E)-2 

1500 (15 generation ×100 

data) 

Figure 5 (C)-2, (D)-2 

1000 (10 generation× 

100 data) 

Figure 5 (E)-3 

1500 (15 

generation×100 data) 

Figure 5 (E)-4 

1) ZDT4 Problem 

Method of Method of satisficing GDEA SVM 
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ε−constraint trade-off 

613 

Figure 6 (A) 

cf. # ε : 11 cases 

264 per one 

aspiration level 

Figure 6 (B) 

cf. # on the average 

25000 (250 generation 

×100 data) 

Figure 6 (C) 

—- 

 

Using either strategy, nearly identical answers were obtained for the cantilever beam design 

problem. It is commonly recognized that ZDT4 is a challenging problem for evolutionary 

algorithms to tackle. We employed a basic GA in the internal procedure for implementing 

GDEA. As a result, the precise Pareto border could not be obtained using GDEA or MOGA 

using simple GA. Therefore, more advanced evolutionary algorithms ought to be used in this 

situation. SVM was unable to provide a viable solution for this problem in the number of 

functions calls in the same order. 

Note that in situations when traditional optimization approaches can be used, classical methods 

like the constraint transformation method (ϵ constraint method) can produce a Pareto frontier 

with fewer function calls. It's unclear how the problem is handled by MATLAB's nonlinear 

optimization function. It requires roughly 400 function calls for each ambition level when using 

a separate software that was built by one of the author's coworkers and is based on SQP with 

numerical differentiation. Because ZDT4 has 10 variables, the number of function calls can be 

reduced by up to 1/10 if the derivatives of the functions are accessible. 

 

5. CONCLUSION 

  

Helping decision makers to a good conclusion by balancing multiple competing objectives is 

one of the main goals of multi-objective optimization. While it is optimal to show the entire 

Pareto frontier in order to fully understand the trade-off relationship between objectives, this is 

difficult to do when there are three or more objectives. Consequently, situations having two 

objectives are most suited for this strategy. Evolutionary approaches have been wonderfully 

developed for this goal in recent years. But those techniques typically require a large number 

of users, or a large number of function calls. Function evaluation is generally costly and time-

consuming in engineering design challenges. because they are determined using a variety of 

investigations, including fluid mechanical, thermodynamic, and structural analyses, among 

others, and occasionally even actual sample preparation. Parallelization is a tool used in the 

computation of evolution to get around this problem. An additional tool involves assessing the 

fitness of a subset of individuals and utilizing artificial intelligence to approximate the fitness 

of others. 

 

It's crucial to keep in mind that those strategies work best in situations where there are just two 

or three goals. In this context, the conventional constraint transformation approach (ϵ constraint 

method) can be implemented with fewer function calls, as demonstrated in this study. I think 

it's crucial to remember the fundamentals of multi-objective optimization, and there are 

instances when it makes sense to return to the old favorites. In an experiment with more than 

three objectives, the combination of an aspiration level approach and Pareto border generation 

was used. 
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Multi-objective optimization issues involve human value judgment, which is one of the most 

notable distinctions between them and the natural sciences. Decision-makers frequently make 

inconsistent value judgments at different stages of the decision-making process. Obtaining a 

solution that accurately reflects the decision makers' value assessment is crucial, even if it is 

not always consistent. Therefore, using a computer alone to find a solution would be nearly 

impossible; nonetheless, in many engineering design challenges, human-computer cooperation 

is inevitable. It is crucial to utilize the advantages of both humans and computers in this 

situation. In light of this, it may be feasible and efficient to combine human-side satisficing and 

computer-side optimization, particularly when dealing with multi-objective optimization issues 

in real-world scenarios. 
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